

Quincy, WA Data Centers

Potential Acute Health Impacts of Multiple Diesel-powered Emergency Generators' Emissions

Gary Palcisko Air Quality Program Washington State Department of Ecology

Data Centers

- Centralized placement of servers
 - > increase their computing capacity
 - comply with new data-retention rules
 - > simplifying their computing infrastructure

Key Considerations in Siting Data Centers

- Cost / availability of land
- Access to communications infrastructure
 - > Fiber optic cable
- Security
- Minimal natural disaster threat
- Taxes
- Power stability
- Cost of energy

Data Centers in Quincy, WA

2006 Microsoft

- 74 acres, 48 megawatts of power drawn from the local power grid (when fully operational).
- > 24 2.4 megawatt diesel-powered backup generators

2007 Yahoo!

- > 50 acres
- > 13 2.4 megawatt diesel-powered backup generators

2007 Intuit

- 63 acres (outside the current urban growth area)
- > 9 2.4 megawatt diesel-powered backup generator

Air Emissions

- Under most conditions, data center air emissions are minimal
- System-wide power failure could result in the simultaneous operation of dozens of LARGE diesel engines

Ecology's NSR for Toxics

- T-BACT is required for any new or modified emission unit that has an increase in emissions of toxic air pollutants.
 - On-road specification diesel fuel with a sulfur content of 0.0015 weight percent or less, and compliance with the Environmental Protection Agency (EPA) Tier II standards (40 CFR 89) for non-road engines

Toxic Air Pollutants WAC 173-460

- About 500 or so chemicals
- Each TAP has an Acceptable Source Impact Level
 - > 1 x 10⁻⁶ cancer risk
 - > reference concentration from IRIS
 - ACGIH TLV with uncertainty factors applied

Tiered Process

Tier I

Use screening process to determine if emission of TAP exceeds an ASIL

Tier II

- Use more refined model (e.g., AERMOD)
- Submit Health Impacts Assessment

■ Tier III

If cancer risk exceeds 1 x 10⁻⁵, risk management process may be used... (NOTE: non-cancer hazards not addressed here)

Tier 1 – Diesel-powered Generators

- Arsenic
- Benzene
- Cadmium
- Lead
- Total PAH's
- Nitric Oxide

Tier II – Diesel-powered Generators

- Arsenic
- Benzene
- **■** Cadmium
- Lead
- Total PAH's
- Nitric Oxide

Derivation of Nitric Oxide ASIL

- Based on occupational standard
- Uncertainty factors applied to protect general public
 - > ~30,000 ug/m³ 8-hr TWA
 - 3 (converts 8 hours to 24 hours)
 - 10 (non-recovery factor)
 - 10 (sensitive individuals)
 - ightharpoonup ASIL = 100 ug/m³ 24-hr avg

NOTE: ASILs currently being revised

Nitric oxide will no longer be regulated under new source review for toxics

Quincy Data Centers

- Nitric oxide levels from each individual source were considered to be acceptable
 - NOTE: general population health based values for nitric oxide do not currently exist
- What about cumulative impacts?
- What about chemicals not currently regulated?
- Emergency planning?

Chemicals Emitted from Generators not Currently Covered by WAC 173-460

► NO₂

- OEHHA Acute REL- 470 ug/m³ (1-hr)
- Acute Exposure Guidance levels (1-hr)
 - Level 1 (non disabling) 940 ug/m³
 - Level 2 (disabling) 23,000 ug/m³
 - Level 3 (fatal) 38,000 ug/m³

> DPM

- IRIS RfC 5 ug/m³
- OEHHA URF 3 x 10⁻⁴

Acute Health Effects

■ NO₂

- > 470 ug/m³
 - increased airway reactivity (asthmatics)
- > 940 ug/m³ -
 - Discomfort, burning of the eyes, headache, chest tightness, or labored breathing with exercise.
 - People with asthma are more likely to experience respiratory symptoms than the general public.
 - Most people will also be able to notice the bleachlike, acrid odor of NO₂.

Acute Health Effects

- **■** PM_{2.5}
 - Respiratory Symptoms
 - Exacerbates existing illness
 - Asthma attacks
 - Increased hospitalization / emergency room visits
 - Mortality increases with PM_{2.5}
 - Cardiovascular
 - Respiratory

Remaining Questions

- How frequently would we expect meteorological conditions to result in 1-hr NO₂ concentrations above 940 ug/m³ at various receptor points (residences, schools, and any place where people might be)?
- Would consideration of background/baseline PM_{2.5} warrant risk management or emergency planning decisions?

The Future of Data Centers?

- NO₂ and DPM likely to trigger tier II
 - > Acute
 - NO₂
 - 1-hr impact near data centers will likely exceed REL and AEGL
 - > Chronic
 - DPM
 - 10 ug/m³ DPM for 200 hours of power-outage over a 70 year period results in cancer risk of ~ 1 x 10-6
- Tax incentives?

